Thursday, March 6, 2014

Yosemite bears and human food: Study reveals changing diets over past century



Management strategies implemented since 1999 have successfully limited the availability of human food to black bears in Yosemite, but problems remain



              
Black bears in Yosemite National Park and elsewhere are notorious for seeking out human food, even breaking into cars and cabins for it. A new study reveals just how much human food has contributed to the diets of Yosemite bears over the past century.

Researchers at the University of California, Santa Cruz, were able to estimate the proportion of human-derived food in bears' diets by analyzing chemical isotopes in hair and bone samples. The results, published in the March issue of Frontiers in Ecology and the Environment, show how bears' diets have changed over the years as the National Park Service took different approaches to managing bears and people in Yosemite.

"Yosemite has a rich history of bear management practices as a result of shifting goals over the years," said Jack Hopkins, lead author of the paper and a research fellow at UC Santa Cruz. "What we found was that the diets of bears changed dramatically after 1999, when the park got funding to implement a proactive management strategy to keep human food off the landscape."

That funding has been used primarily to buy bear-resistant food-storage containers and increase enforcement of their use, hire more staff to manage problem bears, and establish a "bear team" to increase visitor compliance with rules for storing food in areas such as campgrounds and hotels. The study, which focused on bears that had learned to eat human food or food waste, found that the proportion of human foods in their diets decreased by about 63 percent after the new strategies were implemented. Unfortunately, according to Hopkins, once a bear gets used to eating human food it will continue looking for it, and even when visitor compliance is high, there will always be a few people who make the mistake of leaving their food where bears can get it.

Hopkins, who worked as a biologist in Yosemite National Park for several years, conducted the study as a graduate student at Montana State University. He teamed up with coauthor Paul Koch, a professor of Earth sciences and dean of physical and biological sciences at UC Santa Cruz, to do the isotope analysis of hair and bone samples. Contemporary hair samples were collected during bear management actions and from barbed-wire hair snares deployed throughout Yosemite. Historical samples were obtained from museum collections.

"This study shows the power of using museum specimens and archived historical material to reconstruct the ecology of a species and to answer pressing management questions," Koch said. "The remarkable thing is that the bears that eat human food are now back to the same level of dumpster diving as in 1915, despite the fact that there are now millions of visitors in Yosemite every year and presumably a lot more garbage."

Yosemite National Park was established in 1890, and Hopkins obtained samples from bears killed between 1915 and 1919 to represent the earliest time period. In those early years, bears were attracted to garbage dumps in the park and were often killed when they became a nuisance. Visitors liked to see bears, however, and in 1923 the park began intentionally feeding bears where visitors could watch them. The last artificial feeding area closed in 1971. There was also a fish hatchery in Yosemite Valley, from 1927 to 1956, where bears once helped themselves to fresh trout from the holding tanks. But closing the hatchery and the feeding areas didn't stop bears from eating human food.

"The bears just went back to the campgrounds and hotels and continued to find human food," Hopkins said.

The average figures for the proportion of human food in bear diets during the four time periods in the study were 13 percent for the period from 1915 to 1919; 27 percent for 1928 to 1939; 35 percent for 1975 to 1985; and 13 percent again for 2001 to 2007.

These results are based on a kind of chemical forensics in which Koch's lab specializes. Isotopic analysis of an animal's tissues can yield clues to its diet because of natural variability in the abundance of rare isotopes of elements such as carbon and nitrogen. Isotope ratios (the ratio of carbon-13 to carbon-12, for example) are different in human foods than in the wild plants and animals that black bears naturally eat in Yosemite, partly due to the large amounts of meat and corn-based foods in our diets.

In order to analyze the data from Yosemite bears that ate a mixture of human and natural foods, Hopkins had to get samples from bears that did not eat any human food, and he had to track down samples of the non-native trout that had been raised in the hatchery. He also needed data representing a 100 percent human food diet, for which he turned to the Smithsonian Institution for samples of human hair from different periods over the past century.

"He searched far and wide to get the collection of samples we analyzed, and that collection made the study powerful enough to answer the question of how management practices affect bear diets," Koch said.

According to Hopkins, the key to managing bear problems is to prevent bears from becoming conditioned to eat human food in the first place. He has done other studies using genetic analysis to show that the offspring of bears that eat human food end up having the same foraging behaviors as their mothers. And when problem bears are relocated away from human food sources, they eventually return and continue seeking human food until they are killed, often by management staff.

"People like to see bears, and they don't like to hear about bears being killed. But the bears they often see in visitor-use areas like Yosemite Valley are the ones that are conditioned to eat human food, and those are the ones that become problems and have to be killed," Hopkins said.

Cougars Are Re-Populating their Historical Range




American mountain lions, or cougars, are remerging in areas of the United States, reversing 100 years of decline. The evidence, published in The Journal of Wildlife Management, raises new conservation questions, such as how humans can live alongside the returning predators.


The reintroduction of mountain lions across the mid-western United States has made species management an urgent area of research for conservationists. A report in the Wildlife Society Bulletin explores the fatal cost of human interaction with cougars and asks what state agencies can do to protect both species.

Cougars (Puma concolor) are slowly recolonizing their historic habitats, including the Black Hills of South Dakota, but since they’ve been away, the land has become crossed with roads and home to many human communities.

The authors studied 31 cougars, captured between 1999 and 2005. Over the course of 1,570 days, 12 mortalities were recorded. Despite being protected from hunting nearly 62% of cougar deaths were attributed to human influences.

A further 85 dead cougars were analyzed during the study, with collisions being the most common cause of death. Snaring and illegal hunting were also identified as causes.

“The cougar population declined dramatically from 1900, due to both hunting, and a lack of prey, leaving the remaining population isolated to the American west,” said Michelle LaRue from the University of Minnesota. “Here we present the hard evidence that the western population has spread, with cougar populations re-establishing across the Midwest.”

Three main cougar populations exist in the Midwest centered around The Black Hills in South Dakota, however, cougars are venturing far outside of this range. One male cougar from the Black Hills was found to have traveled 2,900 kilometers through Minnesota, Wisconsin and New York, before ending up in Connecticut.

“While the distance the Connecticut cougar traveled was rare, we found that cougars are roaming long distances and are moving back into portions of their historical range across the Midwest ”, said LaRue. “Our study took in over 3,200,000 Km² of territory, confirming the presence of Cougars from Texas, Arkansas and Nebraska, to the Canadian provinces of Ontario and Manitoba.”

Working alongside scientists from Southern Illinois University Carbondale and The Cougar Network, LaRue and Principal Investigator Dr. Clay Nielsen analyzed cougar sightings which have been reported since the 1990’s to characterize confirmed sightings over time, assess habitat suitability and confirm where cougar populations are being re-established.

Aside from confirmed sightings, the team’s evidence included carcasses, tracks, photos, video, DNA evidence and cases of attacks on livestock across 14 states and provinces of North America. Only sightings which were verified by wildlife professionals were included, while sightings of animals known to be released from captivity were excluded to ensure only natural repopulation was analyzed.

The results reveal 178 cougar confirmations in the Midwest with the number of confirmations steadily increasing between 1990 and 2008. Approximately 62% of confirmed sightings took place within 20km of habitat that would be considered suitable for cougar populations.

When cougar carcasses were recovered 76% were found to be male. As the Connecticut example shows, males are capable of traveling long distances and this finding suggests males are leading a stepping-stone dispersal of the cougar population.

“This evidence helps to confirm that cougars are re-colonizing their historical range and reveals that sightings have increased over the past two decades,” concluded LaRue. “The question now is how the public will respond after living without large carnivores for a century. We believe public awareness campaigns and conservation strategies are required across these states, such as the Mountain Lion response plans already in place in Nebraska and Missouri.”